Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
Nat Microbiol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658786

RESUMO

Antibody features vary with tuberculosis (TB) disease state. Whether clinical variables, such as age or sex, influence associations between Mycobacterium tuberculosis-specific antibody responses and disease state is not well explored. Here we profiled Mycobacterium tuberculosis-specific antibody responses in 140 TB-exposed South African individuals from the Adolescent Cohort Study. We identified distinct response features in individuals progressing to active TB from non-progressing, matched controls. A multivariate antibody score differentially associated with progression (SeroScore) identified progressors up to 2 years before TB diagnosis, earlier than that achieved with the RISK6 transcriptional signature of progression. We validated these antibody response features in the Grand Challenges 6-74 cohort. Both the SeroScore and RISK6 correlated better with risk of TB progression in adolescents compared with adults, and in males compared with females. This suggests that age and sex are important, underappreciated modifiers of antibody responses associated with TB progression.

2.
Front Cell Infect Microbiol ; 14: 1367938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590439

RESUMO

The increasing prevalence of antimicrobial-resistant Staphylococcus aureus strains, especially methicillin-resistant S. aureus (MRSA), poses a threat to successful antibiotic treatment. Unsuccessful attempts to develop a vaccine and rising resistance to last-resort antibiotics urge the need for alternative treatments. Host-directed therapy (HDT) targeting critical intracellular stages of S. aureus emerges as a promising alternative, potentially acting synergistically with antibiotics and reducing the risk of de novo drug resistance. We assessed 201 ATP-competitive kinase inhibitors from Published Kinase Inhibitor Sets (PKIS1 and PKIS2) against intracellular MRSA. Seventeen hit compounds were identified, of which the two most effective and well-tolerated hit compounds (i.e., GW633459A and GW296115X) were selected for further analysis. The compounds did not affect planktonic bacterial cultures, while they were active in a range of human cell lines of cervical, skin, lung, breast and monocyte origin, confirming their host-directed mechanisms. GW633459A, structurally related to lapatinib, exhibited an HDT effect on intracellular MRSA independently of its known human epidermal growth factor receptor (EGFR)/(HER) kinase family targets. GW296115X activated adenosine monophosphate-activated protein kinase (AMPK), thereby enhancing bacterial degradation via autophagy. Finally, GW296115X not only reduced MRSA growth in human cells but also improved the survival rates of MRSA-infected zebrafish embryos, highlighting its potential as HDT.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Animais , Staphylococcus aureus , Peixe-Zebra , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana
3.
iScience ; 27(3): 109233, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439958

RESUMO

HLA-E molecules can present self- and pathogen-derived peptides to both natural killer (NK) cells and T cells. T cells that recognize HLA-E peptides via their T cell receptor (TCR) are termed donor-unrestricted T cells due to restricted allelic variation of HLA-E. The composition and repertoire of HLA-E TCRs is not known so far. We performed TCR sequencing on CD8+ T cells from 21 individuals recognizing HLA-E tetramers (TMs) folded with two Mtb-HLA-E-restricted peptides. We sorted HLA-E Mtb TM+ and TM- CD8+ T cells directly ex vivo and performed bulk RNA-sequencing and single-cell TCR sequencing. The identified TCR repertoire was diverse and showed no conservation between and within individuals. TCRs selected from our single-cell TCR sequencing data could be activated upon HLA-E/peptide stimulation, although not robust, reflecting potentially weak interactions between HLA-E peptide complexes and TCRs. Thus, HLA-E-Mtb-specific T cells have a highly diverse TCR repertoire.

4.
Front Immunol ; 15: 1350593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433842

RESUMO

Introduction: Therapeutic vaccination in tuberculosis (TB) represents a Host Directed Therapy strategy which enhances immune responses in order to improve clinical outcomes and shorten TB treatment. Previously, we have shown that the subunit H56:IC31 vaccine induced both humoral and cellular immune responses when administered to TB patients adjunctive to standard TB treatment (TBCOX2 study, NCT02503839). Here we present the longitudinal whole blood gene expression patterns in H56:IC31 vaccinated TB patients compared to controls receiving standard TB treatment only. Methods: The H56:IC31 group (N=11) and Control group (N=7) underwent first-line TB treatment for 182 days. The H56:IC31 group received 5 micrograms of the H56:IC31 vaccine (Statens Serum Institut; SSI, Valneva Austria GmbH) intramuscularly at day 84 and day 140. Total RNA was extracted from whole blood samples collected in PAXgene tubes on days 0, 84, 98, 140, 154, 182 and 238. The expression level of 183 immune-related genes was measured by high-throughput microfluidic qPCR (Biomark HD system, Standard BioTools). Results: The targeted gene expression profiling unveiled the upregulation of modules such as interferon (IFN) signalling genes, pattern recognition receptors and small nucleotide guanosine triphosphate (GTP)-ases in the vaccinated group compared to controls two weeks after administration of the first H56:IC31 vaccine. Additionally, the longitudinal analysis of the Adolescent Cohort Study-Correlation of Risk (ACS-COR) signature showed a progressive downregulation in both study arms towards the end of TB treatment, in congruence with reported treatment responses and clinical improvements. Still, two months after the end of TB treatment, vaccinated patients, and especially those developing both cellular and humoral vaccine responses, showed a lower expression of the ACS-COR genes compared to controls. Discussion: Our data report gene expression patterns following H56:IC31 vaccination which might be interpreted as a lower risk of relapse in therapeutically vaccinated patients. Further studies are needed to conclude if these gene expression patterns could be used as prognostic biosignatures for therapeutic TB vaccine responses.


Assuntos
Vacinas contra a Tuberculose , Tuberculose , Adolescente , Humanos , Oligodesoxirribonucleotídeos , Estudos de Coortes , Vacinas contra a Tuberculose/uso terapêutico , Tuberculose/prevenção & controle , RNA
5.
Nat Commun ; 15(1): 114, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167829

RESUMO

Bacillus Calmette-Guèrin - vaccination induces not only protection in infants and young children against severe forms of tuberculosis, but also against non-tuberculosis related all-cause mortality. To delineate different factors influencing mycobacterial growth control, here we first investigate the effects of BCG-vaccination in healthy Dutch adults. About a quarter of individuals already control BCG-growth prior to vaccination, whereas a quarter of the vaccinees acquires the capacity to control BCG upon vaccination. This leaves half of the population incapable to control BCG-growth. Single cell RNA sequencing identifies multiple processes associated with mycobacterial growth control. These data suggest (i) that already controllers employ different mechanisms to control BCG-growth than acquired controllers, and (ii) that half of the individuals fail to develop measurable growth control irrespective of BCG-vaccination. These results shed important new light on the variable immune responses to mycobacteria in humans and may impact on improved vaccination against tuberculosis and other diseases.


Assuntos
Mycobacterium , Tuberculose , Adulto , Lactente , Criança , Humanos , Pré-Escolar , Vacina BCG , Tuberculose/microbiologia , Vacinação/métodos
7.
Front Immunol ; 14: 1259197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022684

RESUMO

Introduction: The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic and protective against Ebola. However, the vaccine can cause a broad range of transient adverse reactions, from headache to arthritis. Identifying baseline reactogenicity signatures can advance personalized vaccinology and increase our understanding of the molecular factors associated with such adverse events. Methods: In this study, we developed a machine learning approach to integrate prevaccination gene expression data with adverse events that occurred within 14 days post-vaccination. Results and Discussion: We analyzed the expression of 144 genes across 343 blood samples collected from participants of 4 phase I clinical trial cohorts: Switzerland, USA, Gabon, and Kenya. Our machine learning approach revealed 22 key genes associated with adverse events such as local reactions, fatigue, headache, myalgia, fever, chills, arthralgia, nausea, and arthritis, providing insights into potential biological mechanisms linked to vaccine reactogenicity.


Assuntos
Artrite , Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Humanos , Anticorpos Antivirais , Artrite/etiologia , Vacinas contra Ebola/efeitos adversos , Ebolavirus/genética , Cefaleia , Vacinação/efeitos adversos , Vacinação/métodos , Ensaios Clínicos Fase I como Assunto
8.
iScience ; 26(10): 107889, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37817935

RESUMO

This study characterized mechanisms of Bacille Calmette-Guérin (BCG) revaccination-induced trained immunity (TI) in India. Adults, BCG vaccinated at birth, were sampled longitudinally before and after a second BCG dose. BCG revaccination significantly elevated tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, and IL-6 in HLA-DR+CD16-CD14hi monocytes, demonstrating induction of TI. Mycobacteria-specific CD4+ T cell interferon (IFN) γ, IL-2, and TNF-α were significantly higher in re-vaccinees and correlated positively with HLA-DR+CD16-CD14hi TI responses. This, however, did not translate into increased mycobacterial growth control, measured by mycobacterial growth inhibition assay (MGIA). Post revaccination, elevated secreted TNF-α, IL-1ß, and IL-6 to "heterologous" fungal, bacterial, and enhanced CXCL-10 and IFNα to viral stimuli were also observed concomitant with increased anti-inflammatory cytokine, IL-1RA. RNA sequencing after revaccination highlighted a BCG and LPS induced signature which included upregulated IL17 and TNF pathway genes and downregulated key inflammatory genes: CXCL11, CCL24, HLADRA, CTSS, CTSC. Our data highlight a balanced immune response comprising pro- and anti-inflammatory mediators to be a feature of BCG revaccination-induced immunity.

9.
Front Cell Infect Microbiol ; 13: 1253037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822359

RESUMO

Lung epithelial cells represent the first line of host defence against foreign inhaled components, including respiratory pathogens. Their responses to these exposures may direct subsequent immune activation to these pathogens. The epithelial response to mycobacterial infections is not well characterized and may provide clues to why some mycobacterial infections are cleared, while others are persistent and pathogenic. We have utilized an air-liquid interface model of human primary bronchial epithelial cells (ALI-PBEC) to investigate the epithelial response to infection with a variety of mycobacteria: Mycobacterium tuberculosis (Mtb), M. bovis (BCG), M. avium, and M. smegmatis. Airway epithelial cells were found to be infected by all four species, albeit at low frequencies. The proportion of infected epithelial cells was lowest for Mtb and highest for M. avium. Differential gene expression analysis revealed a common epithelial host response to mycobacteria, including upregulation of BIRC3, S100A8 and DEFB4, and downregulation of BPIFB1 at 48 h post infection. Apical secretions contained predominantly pro-inflammatory cytokines, while basal secretions contained tissue growth factors and chemokines. Finally, we show that neutrophils were attracted to both apical and basal secretions of infected ALI-PBEC. Neutrophils were attracted in high numbers to apical secretions from PBEC infected with all mycobacteria, with the exception of secretions from M. avium-infected ALI-PBEC. Taken together, our results show that airway epithelial cells are differentially infected by mycobacteria, and react rapidly by upregulation of antimicrobials, and increased secretion of inflammatory cytokines and chemokines which directly attract neutrophils. Thus, the airway epithelium may be an important immunological component in controlling and regulating mycobacterial infections.


Assuntos
Infecções por Mycobacterium , Mycobacterium tuberculosis , Humanos , Citocinas/metabolismo , Células Epiteliais/metabolismo , Quimiocinas/metabolismo
10.
Clin Transl Med ; 13(9): e1375, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37649224

RESUMO

BACKGROUND: People with diabetes are more likely to develop tuberculosis (TB) and to have poor TB-treatment outcomes than those without. We previously showed that blood transcriptomes in people with TB-diabetes (TB-DM) co-morbidity have excessive inflammatory and reduced interferon responses at diagnosis. It is unknown whether this persists through treatment and contributes to the adverse outcomes. METHODS: Pulmonary TB patients recruited in South Africa, Indonesia and Romania were classified as having TB-DM, TB with prediabetes, TB-related hyperglycaemia or TB-only, based on glycated haemoglobin concentration at TB diagnosis and after 6 months of TB treatment. Gene expression in blood at diagnosis and intervals throughout treatment was measured by unbiased RNA-Seq and targeted Multiplex Ligation-dependent Probe Amplification. Transcriptomic data were analysed by longitudinal mixed-model regression to identify whether genes were differentially expressed between clinical groups through time. Predictive models of TB-treatment response across groups were developed and cross-tested. RESULTS: Gene expression differed between TB and TB-DM patients at diagnosis and was modulated by TB treatment in all clinical groups but to different extents, such that differences remained in TB-DM relative to TB-only throughout. Expression of some genes increased through TB treatment, whereas others decreased: some were persistently more highly expressed in TB-DM and others in TB-only patients. Genes involved in innate immune responses, anti-microbial immunity and inflammation were significantly upregulated in people with TB-DM throughout treatment. The overall pattern of change was similar across clinical groups irrespective of diabetes status, permitting models predictive of TB treatment to be developed. CONCLUSIONS: Exacerbated transcriptome changes in TB-DM take longer to resolve during TB treatment, meaning they remain different from those in uncomplicated TB after treatment completion. This may indicate a prolonged inflammatory response in TB-DM, requiring prolonged treatment or host-directed therapy for complete cure. Development of transcriptome-based biomarker signatures of TB-treatment response should include people with diabetes for use across populations.


Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Transcriptoma/genética , Comorbidade , Perfilação da Expressão Gênica
11.
Biotechnol Bioeng ; 120(8): 2314-2325, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37424521

RESUMO

Human macrophages are innate immune cells with diverse, functionally distinct phenotypes, namely, pro-inflammatory M1 and anti-inflammatory M2 macrophages. Both are involved in multiple physiological and pathological processes, including would healing, infection, and cancer. However, the metabolic differences between these phenotypes are largely unexplored at single-cell resolution. To address this knowledge gap, an untargeted live single-cell mass spectrometry-based metabolomic profiling coupled with a machine-learning data analysis approach was developed to investigate the metabolic profile of each phenotype at the single-cell level. Results show that M1 and M2 macrophages have distinct metabolic profiles, with differential levels of fatty acyls, glycerophospholipids, and sterol lipids, which are important components of plasma membrane and involved in multiple biological processes. Furthermore, we could discern several putatively annotated molecules that contribute to inflammatory response of macrophages. The combination of random forest and live single-cell metabolomics provided an in-depth profile of the metabolome of primary human M1 and M2 macrophages at the single-cell level for the first time, which will pave the way for future studies targeting the differentiation of other immune cells.


Assuntos
Macrófagos , Algoritmo Florestas Aleatórias , Humanos , Macrófagos/metabolismo , Metabolômica , Metaboloma , Fenótipo
12.
Sci Rep ; 13(1): 11617, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464009

RESUMO

Tuberculosis (TB) is a prevalent disease causing an estimated 1.6 million deaths and 10.6 million new cases annually. Discriminating TB disease from differential diagnoses can be complex, particularly in the field. Increased levels of complement component C1q in serum have been identified as a specific and accessible biomarker for TB disease but the source of C1q in circulation has not been identified. Here, data and samples previously collected from human cohorts, a clinical trial and a non-human primate study were used to identify cells producing C1q in circulation. Cell subset frequencies were correlated with serum C1q levels and combined with single cell RNA sequencing and flow cytometry analyses. This identified monocytes as C1q producers in circulation, with a pronounced expression of C1q in classical and intermediate monocytes and variable expression in non-classical monocytes.


Assuntos
Monócitos , Tuberculose , Animais , Humanos , Monócitos/metabolismo , Complemento C1q/metabolismo , Tuberculose/diagnóstico , Tuberculose/metabolismo , Primatas , Biomarcadores/metabolismo
13.
Front Microbiol ; 14: 1171990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228375

RESUMO

Introduction: Placental transfer of maternal antibodies is essential for neonatal immunity over the first months of life. In the setting of maternal HIV infection, HIV-exposed uninfected (HEU) infants are at higher risk of developing severe infections, including active tuberculosis (TB). Given our emerging appreciation for the potential role of antibodies in the control of Mycobacterium tuberculosis (Mtb), the bacteria that causes TB, here we aimed to determine whether maternal HIV status altered the quality of Mtb-specific placental antibody transfer. Methods: Antigen-specific antibody systems serology was performed to comprehensively characterize the Mtb-specific humoral immune response in maternal and umbilical cord blood from HIV infected and uninfected pregnant people in Uganda. Results: Significant differences were noted in overall antibody profiles in HIV positive and negative maternal plasma, resulting in heterogeneous transfer of Mtb-specific antibodies. Altered antibody transfer in HIV infected dyads was associated with impaired binding to IgG Fc-receptors, which was directly linked to HIV viral loads and CD4 counts. Conclusions: These results highlight the importance of maternal HIV status on antibody transfer, providing clues related to alterations in transferred maternal immunity that may render HEU infants more vulnerable to TB than their HIV-unexposed peers.

14.
J Mol Med (Berl) ; 101(5): 557-568, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36959259

RESUMO

Ebola virus can trigger a release of pro-inflammatory cytokines with subsequent vascular leakage and impairment of clotting finally leading to multiorgan failure and shock after entering and infecting patients. Ebola virus is known to directly target endothelial cells and macrophages, even without infecting them, through direct interactions with viral proteins. These interactions affect cellular mechanics and immune processes, which are tightly linked to other key cellular functions such as metabolism. However, research regarding metabolic activity of these cells upon viral exposure remains limited, hampering our understanding of its pathophysiology and progression. Therefore, in the present study, an untargeted cellular metabolomic approach was performed to investigate the metabolic alterations of primary human endothelial cells and M1 and M2 macrophages upon exposure to Ebola virus-like particles (VLP). The results show that Ebola VLP led to metabolic changes among endothelial, M1, and M2 cells. Differential metabolite abundance and perturbed signaling pathway analysis further identified specific metabolic features, mainly in fatty acid-, steroid-, and amino acid-related metabolism pathways for all the three cell types, in a host cell specific manner. Taken together, this work characterized for the first time the metabolic alternations of endothelial cells and two primary human macrophage subtypes after Ebola VLP exposure, and identified the potential metabolites and pathways differentially affected, highlighting the important role of those host cells in disease development and progression. KEY MESSAGES: • Ebola VLP can lead to metabolic alternations in endothelial cells and M1 and M2 macrophages. • Differential abundance of metabolites, mainly including fatty acids and sterol lipids, was observed after Ebola VLP exposure. • Multiple fatty acid-, steroid-, and amino acid-related metabolism pathways were observed perturbed.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/fisiologia , Células Endoteliais , Transdução de Sinais , Aminoácidos
15.
Cytometry A ; 103(7): 600-610, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36898852

RESUMO

Characterization of immune cells is essential to advance our understanding of immunology and flow cytometry is an important tool in this context. Addressing both cellular phenotype and antigen-specific functional responses of the same cells is valuable to achieve a more integrated understanding of immune cell behavior and maximizes information obtained from precious samples. Until recently, panel size was limiting, resulting in panels generally focused on either deep immunophenotyping or functional readouts. Ongoing developments in the field of (spectral) flow cytometry have made panels of 30+ markers more accessible, opening up possibilities for advanced integrated analyses. Here, we optimized immune phenotyping by co-detection of markers covering chemokine receptors, cytokines and specific T cell/peptide tetramer interaction using a 32-color panel. Such panels enable integrated analysis of cellular phenotypes and markers assessing the quality of immune responses and will contribute to our understanding of the immune system.


Assuntos
Citocinas , Leucócitos Mononucleares , Humanos , Citometria de Fluxo/métodos , Imunofenotipagem , Receptores de Quimiocinas , Quimiocinas
16.
NPJ Vaccines ; 8(1): 25, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823425

RESUMO

Viral-vectored vaccines are highly amenable for respiratory mucosal delivery as a means of inducing much-needed mucosal immunity at the point of pathogen entry. Unfortunately, current monovalent viral-vectored tuberculosis (TB) vaccine candidates have failed to demonstrate satisfactory clinical protective efficacy. As such, there is a need to develop next-generation viral-vectored TB vaccine strategies which incorporate both vaccine antigen design and delivery route. In this study, we have developed a trivalent chimpanzee adenoviral-vectored vaccine to provide protective immunity against pulmonary TB through targeting antigens linked to the three different growth phases (acute/chronic/dormancy) of Mycobacterium tuberculosis (M.tb) by expressing an acute replication-associated antigen, Ag85A, a chronically expressed virulence-associated antigen, TB10.4, and a dormancy/resuscitation-associated antigen, RpfB. Single-dose respiratory mucosal immunization with our trivalent vaccine induced robust, sustained tissue-resident multifunctional CD4+ and CD8+ T-cell responses within the lung tissues and airways, which were further quantitatively and qualitatively improved following boosting of subcutaneously BCG-primed hosts. Prophylactic and therapeutic immunization with this multivalent trivalent vaccine in conventional BALB/c mice provided significant protection against not only actively replicating M.tb bacilli but also dormant, non-replicating persisters. Importantly, when used as a booster, it also provided marked protection in the highly susceptible C3HeB/FeJ mice, and a single respiratory mucosal inoculation was capable of significant protection in a humanized mouse model. Our findings indicate the great potential of this next-generation TB vaccine strategy and support its further clinical development for both prophylactic and therapeutic applications.

17.
J Clin Endocrinol Metab ; 108(4): 931-940, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36262060

RESUMO

CONTEXT: South Asian individuals are more prone to develop type 2 diabetes (T2D) coinciding with earlier complications than Europids. While inflammation plays a central role in the development and progression of T2D, this factor is still underexplored in South Asians. OBJECTIVE: This work aimed to study whether circulating messenger RNA (mRNA) transcripts of immune genes are different between South Asian compared with Europid patients with T2D. METHODS: A secondary analysis was conducted of 2 randomized controlled trials of Dutch South Asian (n = 45; age: 55 ± 10 years, body mass index [BMI]: 29 ± 4 kg/m2) and Dutch Europid (n = 44; age: 60 ± 7 years, BMI: 32 ± 4 kg/m2) patients with T2D. Main outcome measures included mRNA transcripts of 182 immune genes (microfluidic quantitative polymerase chain reaction; Fluidigm Inc) in fasted whole-blood, ingenuity pathway analyses (Qiagen). RESULTS: South Asians, compared to Europids, had higher mRNA levels of B-cell markers (CD19, CD79A, CD79B, CR2, CXCR5, IGHD, MS4A1, PAX5; all fold change > 1.3, false discovery rate [FDR] < 0.008) and interferon (IFN)-signaling genes (CD274, GBP1, GBP2, GBP5, FCGR1A/B/CP, IFI16, IFIT3, IFITM1, IFITM3, TAP1; all FC > 1.2, FDR < 0.05). In South Asians, the IFN signaling pathway was the top canonical pathway (z score 2.6; P < .001) and this was accompanied by higher plasma IFN-γ levels (FC = 1.5, FDR = 0.01). Notably, the ethnic difference in gene expression was larger for women (20/182 [11%]) than men (2/182 [1%]). CONCLUSION: South Asian patients with T2D show a more activated IFN-signaling pathway compared to Europid patients with T2D, which is more pronounced in women than men. We speculate that a more activated IFN-signaling pathway may contribute to the more rapid progression of T2D in South Asian compared with Europid individuals.


Assuntos
Diabetes Mellitus Tipo 2 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/etnologia , Diabetes Mellitus Tipo 2/genética , Etnicidade , População do Sul da Ásia , População Europeia
18.
Immunology ; 168(3): 526-537, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36217755

RESUMO

There is growing interest in HLA-E-restricted T-cell responses as a possible novel, highly conserved, vaccination targets in the context of infectious and malignant diseases. The developing field of HLA multimers for the detection and study of peptide-specific T cells has allowed the in-depth study of TCR repertoires and molecular requirements for efficient antigen presentation and T-cell activation. In this study, we developed a method for efficient peptide thermal exchange on HLA-E monomers and multimers allowing the high-throughput production of HLA-E multimers. We optimized the thermal-mediated peptide exchange, and flow cytometry staining conditions for the detection of TCR and NKG2A/CD94 receptors, showing that this novel approach can be used for high-throughput identification and analysis of HLA-E-binding peptides which could be involved in T-cell and NK cell-mediated immune responses. Importantly, our analysis of NKG2A/CD94 interaction in the presence of modified peptides led to new molecular insights governing the interaction of HLA-E with this receptor. In particular, our results reveal that interactions of HLA-E with NKG2A/CD94 and the TCR involve different residues. Altogether, we present a novel HLA-E multimer technology based on thermal-mediated peptide exchange allowing us to investigate the molecular requirements for HLA-E/peptide interaction with its receptors.


Assuntos
Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Ligação Proteica , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos , Receptores de Antígenos de Linfócitos T , Subfamília D de Receptores Semelhantes a Lectina de Células NK/química , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK
19.
mBio ; 14(1): e0302422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36475748

RESUMO

The global burden of tuberculosis (TB) is aggravated by the continuously increasing emergence of drug resistance, highlighting the need for innovative therapeutic options. The concept of host-directed therapy (HDT) as adjunctive to classical antibacterial therapy with antibiotics represents a novel and promising approach for treating TB. Here, we have focused on repurposing the clinically used anticancer drug tamoxifen, which was identified as a molecule with strong host-directed activity against intracellular Mycobacterium tuberculosis (Mtb). Using a primary human macrophage Mtb infection model, we demonstrate the potential of tamoxifen against drug-sensitive as well as drug-resistant Mtb bacteria. The therapeutic effect of tamoxifen was confirmed in an in vivo TB model based on Mycobacterium marinum infection of zebrafish larvae. Tamoxifen had no direct antimicrobial effects at the concentrations used, confirming that tamoxifen acted as an HDT drug. Furthermore, we demonstrate that the antimycobacterial effect of tamoxifen is independent of its well-known target the estrogen receptor (ER) pathway, but instead acts by modulating autophagy, in particular the lysosomal pathway. Through RNA sequencing and microscopic colocalization studies, we show that tamoxifen stimulates lysosomal activation and increases the localization of mycobacteria in lysosomes both in vitro and in vivo, while inhibition of lysosomal activity during tamoxifen treatment partly restores mycobacterial survival. Thus, our work highlights the HDT potential of tamoxifen and proposes it as a repurposed molecule for the treatment of TB. IMPORTANCE Tuberculosis (TB) is the world's most lethal infectious disease caused by a bacterial pathogen, Mycobacterium tuberculosis. This pathogen evades the immune defenses of its host and grows intracellularly in immune cells, particularly inside macrophages. There is an urgent need for novel therapeutic strategies because treatment of TB patients is increasingly complicated by rising antibiotic resistance. In this study, we explored a breast cancer drug, tamoxifen, as a potential anti-TB drug. We show that tamoxifen acts as a so-called host-directed therapeutic, which means that it does not act directly on the bacteria but helps the host macrophages combat the infection more effectively. We confirmed the antimycobacterial effect of tamoxifen in a zebrafish model for TB and showed that it functions by promoting the delivery of mycobacteria to digestive organelles, the lysosomes. These results support the high potential of tamoxifen to be repurposed to fight antibiotic-resistant TB infections by host-directed therapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Peixe-Zebra , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Reposicionamento de Medicamentos , Tuberculose/microbiologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética
20.
F1000Res ; 12: 1401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298529

RESUMO

Background: Research infrastructures are facilities or resources that have proven fundamental for supporting scientific research and innovation. However, they are also known to be very expensive in their establishment, operation and maintenance. As by far the biggest share of these costs is always borne by public funders, there is a strong interest and indeed a necessity to develop alternative business models for such infrastructures that allow them to function in a more sustainable manner that is less dependent on public financing. Methods: In this article, we describe a feasibility study we have undertaken to develop a potentially sustainable business model for a vaccine research and development (R&D) infrastructure. The model we have developed integrates two different types of business models that would provide the infrastructure with two different types of revenue streams which would facilitate its establishment and would be a measure of risk reduction. For the business model we are proposing, we have undertaken an ex ante impact assessment that estimates the expected impact for a vaccine R&D infrastructure based on the proposed models along three different dimensions: health, society and economy. Results: Our impact assessment demonstrates that such a vaccine R&D infrastructure could achieve a very significant socio-economic impact, and so its establishment is therefore considered worthwhile pursuing. Conclusions: The business model we have developed, the impact assessment and the overall process we have followed might also be of interest to other research infrastructure initiatives in the biomedical field.


Assuntos
Pesquisa Biomédica , Vacinas , Comércio , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...